

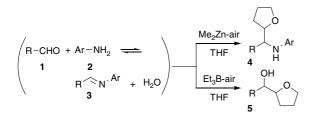
Available online at www.sciencedirect.com

Tetrahedron Letters 45 (2004) 795-797

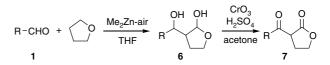
Tetrahedron Letters

Unexpected reaction of a dimethylzinc-generated THF radical with aldehydes

Yasutomo Yamamoto, Ken-ichi Yamada and Kiyoshi Tomioka*


Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan

Received 2 October 2003; revised 4 November 2003; accepted 7 November 2003


Abstract—A dimethylzinc–air-generated THF radical reacted with aldehydes at the β -position of an α -oxygenated THF. © 2003 Elsevier Ltd. All rights reserved.

We have recently reported that ether radicals, generated directly from ethers by the α -hydrogen abstraction with dimethylzinc–air, reacted with imines to give the corresponding ether addition products in high yields.¹ Continuing studies revealed that the dimethylzinc-generated THF α -radical underwent the initiator dependent chemoselective addition reaction with an equilibrium mixture of an aldehyde 1 and an arylamine 2, giving the imine 3-selective addition products 4 without production of aldehyde adducts 5, whereas a triethylborane-initiated THF α -radical gave THF α -radical adducts 5 (Scheme 1).²

The reaction of a dimethylzinc-initiated THF α -radical with aldehydes 1 did not give expected THF α -radical adducts 5, recovering aldehydes 1 in such a reaction time required for completion of an imine reaction. It was contrasted to the triethylborane-generated THF α -radical, developed by Yoshimitsu and Nagaoka, that reacts with aldehydes 1, giving the corresponding THF

Scheme 1. Initiator dependent chemoselective addition of THF radical.

Scheme 2. Reaction of a dimethylzinc-initiated THF radical with aldehydes 1.

 α -radical adducts **5** in reasonably high yields.³ Further studies toward understanding this initiator dependent chemoselectivity led us to the unexpected reaction of a THF radical with aldehydes **1**, giving the corresponding β -radical adducts **6** of an α -oxygenated THF (Scheme 2).⁴

A solution of benzaldehyde **1a** (R = Ph) in THF was treated with 12 equiv of 1.0 M hexane solution of dimethylzinc under continuous oxygen gas bubbling at room temperature for 7 days. Since the products involved an inseparable mixture of **6**, the crude mixture was further treated with Jones reagent in acetone at 0 °C for 15 min to give a mixture of chromatographically separable at least four ketone products, **8** (10%), **7a** (10%), **9** (8%), and **10** (17%) (Fig. 1).^{5,6} The ketone **8** was derived from a direct addition product **5** (R = Ph) of a THF α -radical to **1a**, whereas **7a**, **9**, and **10** were produced through **6** and its derivatives by the addition of a radical at the β -position of α -oxygenated THF.⁷

Improvement in the production of 7a was carried out by the portionwise addition of a solution of dimethylzinc into a solution of 1a in THF based on the consideration that the formation of 9 and 10 might be reduced under the conditions of low concentration of a methyl radical

^{*} Corresponding author. Tel.: +81-75-753-4553; fax: +81-75-753-4604; e-mail: tomioka@pharm.kyoto-u.ac.jp

^{0040-4039/\$ -} see front matter @~2003 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2003.11.037

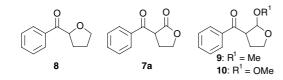
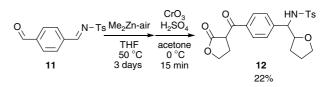
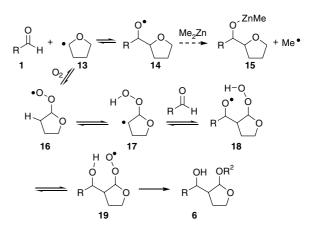



Figure 1. Oxidation products 7a, 8-10 of radical adducts.

that is generated from dimethylzinc. Upon a repeated addition of 3 equiv of dimethylzinc solution by the 12 h interval into a THF solution of **1a**, nearly complete consumption of **1a** was observed after 4 days reaction to give an increased yield of **7a** (34%) and decreased yields of **8** (4%) and **9** (4%) without production of a detectable amount of **10**.


The reaction efficiency was much more improved by heating a reaction mixture at 50 °C with 12 h interval portionwise addition of 3 equiv of a hexane solution of dimethylzinc to 1a in THF under a stream of air for 2 days, giving after oxidation keto-lactone 7a in 54% isolated yield (Table 1, entry 1). It was striking to note that a THF α -adduct 8 and β -adducts 9 and 10 were not produced in detectable amounts under such conditions. 4-Methoxy- and 4-chloro-benzaldehydes 1b,c with electron-donating and -withdrawing substituents, 2methylbenzaldehyde 1d, and 1-naphthaldehyde 1e were converted to the keto-lactones 7b-e in 31-43% yields (entries 2-5). 2-Furaldehyde 1f and cyclohexanecarboxaldehyde 1g were also applicable to the reaction, giving β -adducts **6f** and **7g** in 34% and 24% yields, respectively (entries 6 and 7). Thus the β-radical addition of α -oxygenated THF to aldehydes 1 was shown to be general.

It is interesting to show the species and chemoselective reaction in that the compound 11 bearing both an aldehyde and an imine groups in a molecule reacted with a THF radical in the selective way to afford the adduct 12 in 22% yield. A THF α -radical and an oxygenated THF β -radical chemo- and species-selectively attacked imine and aldehyde functionalities, respectively (Scheme 3).

Scheme 3. Species- and chemoselective reaction of dimethylzinc-generated THF radicals with imino-aldehyde 11.

It has been known that radical additions to carbonyl functionalities are generally disfavored because of their reversibility, which reflects instability of an oxygencentered radical and a strong C=O π bond.⁸⁻¹² The encountered formation of a β -radical adduct **6** is probably attributable to the instability of an alkoxy radical **14**, generated by direct addition of a THF α -radical **13** to a carbonyl group of **1** (Scheme 4). The reverse reaction is faster than the reaction with dimethylzinc to give rise to a zinc alkoxide **15** through formation of a methyl radical.¹³ Rather than the formation of **14**, a THF α -radical **13** undergoes the reaction with oxygen to produce a peroxy radical **16** that in turn abstracts a hydrogen atom at the β -position of **16** to result in the formation of an α -peroxygenated THF β -radical **17**.

Scheme 4. Plausible mechanism for the generation of an α -oxygenated THF β -radical **17** and formation of **6**.

Entry	1	R	Me ₂ Zn (equiv)	Time (days)	Yield (%)
1	1a	Ph	12	2	54
2	1b	$4-MeOC_6H_4$	24	5.5	35
3	1c	$4-ClC_6H_4$	9	3	31
4	1d	$2-MeC_6H_4$	18	4	43
5	1e	1-Naph	18	3	36
6	1f	2-Furyl	12	2	34 ^a
7	1g	$c - C_6 H_{11}$	9	1	24

acetone

Table 1. Reaction of an α -oxygenated THF β -radical with aldehydes 1

R-CHO + O He₂Zn-air

^a Combined yield of a diastereomeric mixture of diols 6.

Further reaction of **17** with a carbonyl group of **1** generates an alkoxy radical **18**, which is then converted to a relatively stable peroxy radical **19** through intramolecular hydrogen atom abstraction and end up with **6** ($\mathbb{R}^2 = \mathbb{H}$, OZnMe, etc.).¹⁴ An excess of methyl radical allows to couple with a peroxy radical **19** to result in the actual formation of an alcohol precursor of **10**, of which detection supported above scenario.

In conclusion, we have encountered an unexpected generation of an α -peroxygenated THF β -radical from THF α -radical in the reaction of aldehydes with dimethylzinc–air-initiated THF radical, which constitutes one of the critical factors governing initiator dependent imine/aldehyde chemoselectivity. Furthermore, the present behavior of THF radicals suggests alternative strategy for the radical addition to carbonyl derivatives. Although a chemical yield is far from practical level, the new findings described herein become the basis of new radical chemistry.

Acknowledgements

This research was partially supported by the 21st Century COE (Center of excellence) Program 'Knowledge Information Infrastructure for Genome Science', a Grant-in-Aid for Young Scientists (B) and a Grantin-Aid for Scientific Research on Priority Areas (A) 'Exploitation of Multi-Element Cyclic Molecules' from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References and notes

- Yamada, K.; Fujihara, H.; Yamamoto, Y.; Miwa, Y.; Taga, T.; Tomioka, K. Org. Lett. 2002, 4, 3509–3511.
- Yamada, K.; Yamamoto, Y.; Tomioka, K. Org. Lett. 2003, 5, 1797–1799.
- (a) Yoshimitsu, T.; Makino, T.; Nagaoka, H. J. Org. Chem. 2003, 68, 7548–7550; (b) Yoshimitsu, T.; Arano, Y.; Nagaoka, H. J. Org. Chem. 2003, 68, 625–627; (c) Yoshimitsu, T.; Tsunoda, M.; Nagaoka, H. Chem. Commun. 1999, 1745–1746.
- 4. For recent impressive α-alkoxy radical reactions, see: (a) Fernández, M.; Alonso, R. Org. Lett. 2003, 5, 2461–2464;
 (b) Tsujimoto, S.; Sakaguchi, S.; Ishii, Y. Tetrahedron

Lett. 2003, 44, 5601–5604; (c) Hirano, K.; Sakaguchi, S.; Ishii, Y. Tetrahedron Lett. 2002, 43, 3617–3620; (d) Mosca, R.; Fagnoni, M.; Mella, M.; Albini, A. Tetrahedron 2001, 57, 10319–10328; (e) Torrente, S.; Alonso, R. Org. Lett. 2001, 3, 1985–1987; (f) Kim, S.; Kim, N.; Chung, W.-J.; Cho, C. H. Synlett 2001, 937–940.

- These compounds gave satisfactory spectroscopic and analytical data. The compounds 7a and 8 were known compound. 7a: Jedlinski, Z.; Kowalczuk, M.; Kurcok, P.; Grzegorzek, M.; Ermel, J. J. Org. Chem. 1987, 52, 4601– 4602; 8: Enholm, E. J.; Schreier, J. A. J. Heterocyclic Chem. 1995, 32, 109–111.
- Trace amounts of γ-butyrolactone and THF-hydroperoxide (Shurvell, H. F.; Southby, M. C. *Vib. Spectrosc.* 1997, *15*, 137–146) were detected by ¹H NMR of the crude product.
- Diorganozinc-oxygen derived complex has been isolated as a possible radical precursor. Lewinski, J.; Marciniak, W.; Lipkowski, J.; Justyniak, I. J. Am. Chem. Soc. 2003, 125, 12698–12699.
- For the reversibility of radical reaction with carbonyl derivatives, see: (a) Walton, R.; Fraser-Reid, B. J. Am. Chem. Soc. 1991, 113, 5791–5799; (b) Beckwith, A. L. J.; Hay, B. P. J. Am. Chem. Soc. 1989, 111, 2674–2681; (c) Beckwith, A. L. J.; Hay, B. P. J. Am. Chem. Soc. 1989, 111, 230–234; (d) Kim, S.; Yoon, J.-Y. In Radicals in Organic Synthesis; Renaud, P., Sibi, M. P., Eds.; Wiley-VCH: Weinheim, 2001; Vol. 2, Chapter 1.1.3, pp 11–12.
- For the addition to acylsilanes, see: (a) Huang, C.-H.; Chang, S.-Y.; Wang, N.-S.; Tsai, Y.-M. J. Org. Chem. 2001, 66, 8983–8991, and references cited therein; (b) For the addition to thioesters, selenoesters, acylgermanes, and acylphosphonate, see: Kim, S.; Cho, C. H.; Lim, C. J. J. Am. Chem. Soc. 2003, 125, 9574–9575, and references cited therein.
- For tributyltin hydride-mediated pinacol coupling, see: (a) Hays, D. S.; Fu, G. C. J. Org. Chem. **1998**, 63, 6375–6381;
 (b) Hays, D. S.; Fu, G. C. J. Am. Chem. Soc. **1995**, 117, 7283–7284.
- For intramolecular cyclization of α-stannyl radical to a formyl group, see: Chang, S.-Y.; Shao, Y.-F.; Chu, S.-F.; Fan, G.-T.; Tsai, Y.-M. Org. Lett. 1999, 1, 945–948.
- For intramolecular radical cyclization to a formyl group with excess silanes, see: (a) Batey, R. A.; MacKay, D. B. *Tetrahedron Lett.* **1998**, *39*, 7267–7270; (b) With excess organophosphorous compound, see: Kim, S.; Oh, D. H. *Synlett* **1998**, 525–527.
- 13. THF α -adduct **5** was obtained rather than β -adduct **6** by using triethylborane–air as an initiator, probably due to the fast reaction of **14** with triethylborane. See Refs.^{3a–c}.
- Bond dissociation energies of HOO-H and HO-H have been reported to be 87.2 and 119 kcal/mol, respectively. MacMillen, D. F.; Golden, D. M. Ann. Rev. Phys. Chem. 1982, 33, 493–532.